The work has ranged from cutting steel-corded truck tires, for subsequent rubber stripping, through to the simplest removal of rubber to separate the cords and to then separate the rubber from the water and use that as a subsequent feed stock for a variety of uses. The control on the marketability of the product comes through a guarantee of the size range of the product, and while this can be achieved in part through secondary processing, it is an advantage if the rubber can be controlled in a certain fine-particle size range. Which is why, in this movie, you will see the nozzle assembly rotate as such a high speed.
Figure 1. Short video of a jet stripping rubber from a tire.
As the video notes, by changing the jet pressure between 10,000 and 13,000 psi one can control whether one is just removing the rubber, also removing the fiber cords, or going all the way through the tire and also removing the rubber material behind the cord.
The economics of the operation also involve the tire size, the speed of the operation, which is controlled by the relative rotation speed of the tire, relative to that of the jets, and the resulting product size of the crumb rubber that is removed – as well as its cleanliness. Those are subjects that are much more job specific than we need to get into at this stage, since the object of the video was rather just to show that, without a huge investment in equipment, it is possible to recover the rubber.